Panel Design: “Multi-Sizing” Your Multi-Color

William Godfrey, Ph.D.
Manager, Reagent & Application Development
Beckman Coulter, Miami
“Multi-Sizing” into Your Multi-Color

• Fluor selection
• Tandem dyes
• Considerations for cocktail design
• Krome Orange™ - A new violet fluor
How Many Colors Needed?

TetraCHROME™ CD45-FITC/CD4-RD1/CD8-ECD/CD3-PC5 with normal blood

CD45-FITC CD4-PE CD3-PC5
How Many Colors Needed?

T-reg cells:
\[\text{CD4}^+ \]
\[\text{CD25}^+ \]
\[\text{FoxP3}^+ \]
\[\text{CD127}^{lo/-} \]

Up to 6-8 colors with addition of CD45 and markers for other leukocyte subpopulations
High Complexity Multi-Color Flow

Benefits
- Correlated Data
 - Single cell interrogation with multiple markers
 - Better population definition
- Labor Efficiency
 - Higher throughput with fewer tubes
 - Minimize sample volume used

Challenges
- More Colors = Greater Complexity
- Complex antibody and fluor combinations
- Requires optimization
- Requires greater expertise
Prerequisites and Pitfalls for 8+ Colors

- Clone selection: specific & avid antibodies
- Bright fluorochromes with range of Stoke’s shifts
- “Well-behaved” conjugates (stable binding; low spectral overlap; low background)
- Higher-plex flow cytometers with efficient light paths
 - BD Canto™ cytometer (8-colors)
 - BC Cyan™ cytometer (9-colors)
 - BC GALLIOS™ cytometer (10-colors)
Fluorochrome Landscape

Intrinsic Characteristics
• Extinction Coefficient
• Quantum Yield
• Emission Spectral Overlap

Instrument Optics
• Filter Selection
• PMT Sensitivity
• Laser Wavelength & Power

Comparative Intensities of CD8 Conjugates

Excitation

Blue
FITC
PE
ECD
PC5
PECy5.5
PC7

Red
APC
Alexa 700
APCAlexa 700
APC-H7
APCAlexa 750

Violet
Pacific Blue
Pacific Orange

+ Nanocrystals

Brighter Fluors

2010 Webinar Series
Dye Options: 10-Colors

- 405nm: Pacific Blue
- 488nm: FITC, PE, ECD, PE-Cy5.5, PE-Cy7
- 635nm: APC, APC-AF700, APC-Cy7, APC-AF750

2010 Webinar Series
Dye Options: Conventional Fluors

- 405nm
- 488nm
- 635nm

Dye Options: Conventional Fluors

- Pacific Blue
- Krome Orange
- FITC
- PE
- APC or AF647
Spectra of Common Fluorochromes

• Critical Fluorescence Properties
 – Extinction Coefficient
 – Quantum Efficiency
 – Stoke’s Shift
 – Excitation wavelength

• Consider
 – Available excitations
 – Emission filters

R-PE (565/576)
\[\varepsilon = 2,000 \, \text{K} \]

Fluorescein (495/518)
\[\varepsilon = 78 \, \text{K} \]

APC: (650/662)
\[\varepsilon = 700 \, \text{K} \]
Conjugation Chemistry

Brightness: Optimization of F/P molar ratio
- Minimize impact on antibody binding affinity
- Maximize fluorescence at saturation dosing

Performance: Influenced by multiple factors
- Site of covalent linkage to the antibody
 - Fc – minimal impact on binding affinity
 - F(ab) Region – competition with antigen binding
- Molecular weight (size) of dye molecule
- Hyperconjugation
 - Fluorescence quenching due to close coupling proximity
 - Non-specific binding
 - Dye/Cell aggregation
Performance Impact: Organic Dye Ratio

CD4-Alexa Fluor 488

CD3-Alexa Fluor 488

Fluorimeter
Flow Cytometry

2010 Webinar Series
Dye Options: Tandem Dyes

- 635nm
- 488nm
- 405nm

Dye Options: Tandem Dyes
Fluorescence Resonance Energy Transfer

• Definition
 – Excitation is transferred from donor to acceptor \textit{without emission of a photon}.
 – Donor / acceptor molecules in close proximity (10–100 Å)
 – Acceptor absorption spectrum must overlap donor emission spectrum
 – Donor and acceptor transition dipole orientations must be approximately parallel.

• Advantages
 – Expands fluorochrome choices from single laser source
 – Enhanced fluorescence intensity versus organic dyes
Fluorescence Resonance Energy Transfer

- **Definition**
 - Excitation is transferred from donor to acceptor *without emission of a photon*.
 - Donor / acceptor molecules in close proximity (10–100 Å)
 - Acceptor absorption spectrum must overlap donor emission spectrum
 - Donor and acceptor transition dipole orientations must be approximately parallel.

- **Advantages**
 - Expands fluorochrome choices from single laser source
 - Enhanced fluorescence intensity versus organic dyes

- **Limitations**
 - Lot-to-lot variation
 - Fluorescence sensitivity
 - Energy transfer efficiency
 - Non-specific binding to myeloid populations
 - Photo- and chemical instability
Patented Tandem Dye Process

Native State Phycobiliprotein → Unfold Protein → Couple Acceptor Dye → Refold to Native State

Conjugation process delivers optimum fluorescence intensity
Patented Tandem Dye Process

Three Lot Comparison of PC5
Process controls variability

Dye Coupling Step

HIC Purification Step

2010 Webinar Series
Impact on Compensation

must treat different vendor tandems as different fluorochromes for compensation set-up!
Tandem Dye Selection: Dual Laser

Minimized Spectral Overlap = Better Resolution
Enhanced on photo-stability of APC-Alexa Fluor 750 conjugate regardless of paraforaldehyde
Performance Impact: Antibody & Dye

Non-Specific Binding

Binding due to Fc receptor
CD14-PECy5

Binding due to Cy dye binding
CD3-PECy5

Conjugate/Dye Aggregation

CD15-FITC (IgM)

0.25 µg

0.125 µg

0.063 µg

0.031 µg
Advancing the Science of Cytometry

Proprietary Chemistry / Enhanced Specificity

- Low background fluorescence on negative populations
- Optimal signal to noise
- Low affinity binding of cyanine dyes to monocyte populations eliminated
Fluor Choice

- **Surface Antigens**
 - Large selection of conjugates
 - Limited by detection sensitivity and proximity of co-expressed antigens
 - Tandem dyes provide ↑ sensitivity over organic dyes
 - Moderately bright organic fluors (FITC, Alexa Fluor dyes, violet-excited dyes) good for subset gating

- **Intracellular Antigens**
 - Cytoplasmic antigens
 - Phycobiliproteins and organic dyes may be better
 - Alexa Fluor 488 better than FITC – lower background
 - Nuclear antigens
 - Phycobiliproteins or tandem dyes hindered due to conjugate size?
 - Close proximity can lead to FRET between dyes
Instrument Contributions

- Channels available
- Sensitivity in channels

GALLIOS™ cytometer
- 3 lasers
- 10 colors

Comparative Fluorochrome Sensitivity between Platforms

- FITC
- PE
- ECD
- PECY5
- PECY5.5
- PECY7
- APC
- Alexa Fluor 700
- APCA700
- APCA750
- Pacific Blue
- Pacific Orange
Optimizing the Combination

• Determine fluorochrome/conjugate strategy
 – Organic dyes to maximize spectral separation for gating reagents
 – PE & APC used for antigens with continuum of expression
 – Tandems dyes for mid-density to bright antigens
• Perform titration curves for each conjugate
 – Determine Signal/Noise Ratio
 – Choose optimal dose: Saturation, Highest S/N
• Prepare combination, verify performance
 – Always use controls – approach can vary
 • Negative Control: negative population, FMO, isotype controls
 • Positive controls:
 – Each antibody as single color
 – Known positive control material
 – Evaluate performance for major interactions
What Can Go Wrong?

• Potential conjugate interactions
 – Non-specific binding
 • Aggregate formation between conjugates
 • Cyanine & Alexa Fluor dye binding to myeloid populations
 – Steric Hindrance
 • Ligand – receptor binding blocked due to physical interference
 – Fluorescence Quenching
 • Over conjugation of antibody
 • Concentration and proximity on the cell
 – Unwanted FRET
Dose Optimization: Multi-Step Process

Single color titrations:
- Optimal S/N
- Saturation binding when possible

Combination Matrix to finalize dosing
- Target optimal S/N dose for each component
- Evaluate for potential interactions
- Evaluate multiple doses:
 Simple matrix or DOE

<table>
<thead>
<tr>
<th>CDxx</th>
<th>2X</th>
<th>1x</th>
<th>½ x</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X</td>
<td>2,2</td>
<td>2,1</td>
<td>2, ½</td>
</tr>
<tr>
<td>1x</td>
<td>1,2</td>
<td>1,1</td>
<td>1,½</td>
</tr>
<tr>
<td>½ x</td>
<td>½, 2</td>
<td>½, 1</td>
<td>½, ½</td>
</tr>
</tbody>
</table>
Spectral Overlap

Impact on co-expressed antigens

- Spectral Overlap/Compensation
 - Loss of low end resolution
 - Display artifacts

- If bright signal overlaps into PMT containing dimmer signal
 - Increased “noise”
 - Spread of the negative population
 - Difficulty in accurate determination of low level positivity

ECD shows higher overlap into PE than PC7

![Graphs showing spectral overlap and compensation](image-url)
Effect of Antigen Proximity

- APC conjugates of CD3, CD8, and CD45 versus PE-labeled tetramer
- FRET from PE to APC results in FL3 signal (PerCP channel)
- CD3 & CD8 close to TCR; CD45 antigen spatially separated from TCR
Assay Interferants: Washing

Kappa/Lambda Resolution

- Requires high sensitivity
- Dependant on sample preparation methodology
- Pre-wash required to remove plasma immunoglobulins
Beckman Coulter Solastra™ Panels

<table>
<thead>
<tr>
<th>B-cell Kit</th>
<th>FITC</th>
<th>PE</th>
<th>ECD</th>
<th>PC5.5</th>
<th>PC7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kappa</td>
<td>Lambda</td>
<td>CD19</td>
<td>CD5</td>
<td>CD45</td>
<td></td>
</tr>
<tr>
<td>CD20</td>
<td>CD10</td>
<td>CD19</td>
<td>CD38</td>
<td>CD45</td>
<td></td>
</tr>
<tr>
<td>CD2</td>
<td>CD56</td>
<td>CD7</td>
<td>CD5</td>
<td>CD45</td>
<td></td>
</tr>
<tr>
<td>CD8</td>
<td>CD4</td>
<td></td>
<td>CD3</td>
<td>CD45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T-cell Kit</th>
<th>CD15</th>
<th>CD11b</th>
<th>CD16</th>
<th>CD14</th>
<th>CD45</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD7</td>
<td>CD13</td>
<td>CD34</td>
<td>CD13</td>
<td>CD33</td>
<td>CD45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myeloid Kit</th>
<th>CD15</th>
<th>CD11b</th>
<th>CD16</th>
<th>CD14</th>
<th>CD45</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLADR</td>
<td>CD56</td>
<td>CD34</td>
<td>CD117</td>
<td>CD45</td>
<td></td>
</tr>
</tbody>
</table>

Aligned with Bethesda Recommendations

* Not available for sale in US
Peripheral Blood: Solastra B-cell Kits

B-CLL #1:
CD45++/CD19+/CD5+/−/CD20++/Kappa_{bright}+
New Violet-Excitable Dye

- **GALLIOS™ Configuration:**
 - 3 laser 10 color instrument
 - 405nm laser – 2 colors
 - 488nm laser – 5 colors
 - 635nm laser – 3 colors

- **Krome Orange™ dye**
 Second violet-excitable fluor to pair with Pacific Blue™ dye
Krome Orange Spectrum

<table>
<thead>
<tr>
<th>Fluorophore</th>
<th>Molar Extinction Coefficient (M⁻¹·cm⁻¹)</th>
<th>Absorbance Maximum (nm)</th>
<th>Emission Maximum (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krome Orange Dye</td>
<td>17,685</td>
<td>398</td>
<td>528</td>
</tr>
<tr>
<td>Pacific Blue Dye</td>
<td>46,000</td>
<td>410</td>
<td>455</td>
</tr>
<tr>
<td>Pacific Orange Dye</td>
<td>24,500</td>
<td>400</td>
<td>551</td>
</tr>
<tr>
<td>AmCyan</td>
<td>NA</td>
<td>458</td>
<td>489</td>
</tr>
<tr>
<td>V500 Oye</td>
<td>NA</td>
<td>415</td>
<td>500</td>
</tr>
</tbody>
</table>

- KO
- V500
- Pac Or
- AmCyan
Krome Orange Conjugation

CD45-Krome Orange Titration Curve

- CD45-Krome Orange Titration Curve
 - Median Fluorescence
 - µg Conjugate per Test
 - F:P 17.3
 - F:P 15.9
 - F:P 14.0
 - F:P 10.8
 - F:P 6.1

CD14 (RMO52)-Krome Orange
- SI = 101.3
- Lymphocytes
- Monocytes

CD16 (3G8)-Krome Orange
- SI = 18.6
- Lymphocytes

CD19 (J4.119)-Krome Orange
- SI = 9.2
- Lymphocytes

Krome Orange Conjugation
Krome Orange vs Other Violet Fluors

Krome Orange Dye (550/40)

- CD3: UCHT1 SI = 33.2
- CD4: 13B8.2 SI = 36.6
- CD8: B9.11 SI = 81.7
- CD45: J.331 SI = 29.65

Pacific Orange Dye (575/26)

- CD3: UCHT1 SI = 26.1
- CD4: S3.5 SI = 13.5
- CD8: 3B5 SI = 34.7
- CD45: HI30 SI = 16.03

AmCyan (525/50)

- CD3: SK71 SI = 43.5
- CD4: SK3 SI = 20.6
- CD8: SK1 SI = 48.5
- CD45: 2D1 SI = 21.20

V500 Dye (525/50)

- CD3: SK71 SI = 8.67
- CD4: SK3 SI = 4.19
- CD8: SK1 SI = 13.32
- CD45: RPA-T8 SI = 3.54

2010 Webinar Series
Krome Orange vs Other Violet Fluors

Relative compensation values

<table>
<thead>
<tr>
<th>Violet Dye</th>
<th>Target</th>
<th>Pacific Blue - % Violet Dye (FL9 - %FL10)</th>
<th>Fluorescein - % Violet Dye (FL1 - %FL10)</th>
<th>PE - % Violet Dye (FL2 - %FL10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krome Orange dye</td>
<td>CD3</td>
<td>1.7</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>CD4</td>
<td>1.9</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>CD8</td>
<td>3.3</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Pacific Orange dye</td>
<td>CD3</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>CD4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>CD8</td>
<td>1.8</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>AmCyan</td>
<td>CD3</td>
<td>22.6</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td></td>
<td>CD4</td>
<td>21.7</td>
<td>>100</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>CD8</td>
<td>29.5</td>
<td>>100</td>
<td>19.3</td>
</tr>
<tr>
<td>V500</td>
<td>CD8</td>
<td>15.1</td>
<td>8.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>
Krome Orange: 4-Color Stain

FL9-%FL10 = 0.5%
FL10-%FL9 = 5.8%

FL9-%FL10 = 0.0%
FL10-%FL9 = 5.8%

CD4-Pacific Orange
CD8-Fluorescein
CD19-PE
CD4-Krome Orange

CD4-Pacific Orange
CD8-Fluorescein
CD19-PE
CD4-Krome Orange

CD4-Pacific Orange
CD8-Fluorescein
CD19-PE
CD4-Krome Orange

2010 Webinar Series
Krome Orange: 10-Color Stains

- CD3+ gated
- Side Scatter
- CD8-Pacific Blue
- CD4-Pacific Orange
- CD3-APC
- CD45-Krome Orange
- CD14-PC5
- FL9 - %FL10: Krome Orange™ 1.5, Pacific Orange™ 0.0
- FL10 - %FL9: 9.1, 9.3
Krome Orange: CD45/Side Scatter

CD45-ECD

CD45-Pacific Orange

CD45-V500

CD45-Krome Orange
Summary

- Multi-parametric flow analysis provides a powerful tool
 - Dissection of complex cell populations
 - Identification of underlying mechanisms of disease states
 - Increased efficiency in laboratory testing

- Optimal design is critical for scientifically valid results
 - More colors = Greater complexity
 - Match fluorochrome choices to the platform capability
 - Pair dye intensity with antigen density
 - Violet-excited fluors can easily add 2 parameters

- Validate your applications prior to initiating studies
Acknowledgements

Miami: Reagent Development
 Ravinder Gupta
 Sireesha Kaanumalle
 David Bloodgood
 Meryl Foreman
 Jeffrey Cobb

Marseille: Reagent Development
 Laura Nieto Gligorovsky
 Franck Gaille
 Emmanuel Gautherot
 Felix Montero

Detroit: Organic Chemistry
 Hashem Akhavan-Tafti
 Robert Eickholt
 Mark Sandison
 Rhonda Federspiel

Collaboration
 Frank Preijers (Nijmegen Medical Center)
Questions and Answers?

Upcoming Webinars

2 Sep 2010
T. Vincent Shankey, Ph.D, Beckman Coulter
Cytometry of Cell Signaling: Monitoring Signal Transduction
Monitoring Signal Transduction Pathways in Human Disease

9 Sep 2010
Robert Zigon, Beckman Coulter
Data “Flow” – Rethinking Data Analysis for Flow Cytometry

16 Sep 2010
John Norman, Beckman Coulter
The Perfect 10: A Technology Overview of Beckman Coulter’s New Multi-color Solution for Flow Cytometry

23 Sep 2010
Laura Nieto Gligoroski, Ph.D., Beckman Coulter

30 Sep 2010
Bill Kirouac, Beckman Coulter
Light Forward Scatter Innovation in the Gallios Flow Cytometer

2010 Webinar Series